Recent Updates about the Effects of Vitamin C on the hypothalamic–pituitary–adrenal axis: A review

Author's Information:

Khansaa Hatim Abdulijabar

College of Pharmacy, University of Babylon, Iraq

Hala R. Mohammed

 College of Pharmacy, University of Babylon, Iraq

Vol 2 No 12 (2025):Volume 02 Issue 12 December 2025

Page No.: 205-210

Abstract:

The HPA axis is a central mediator of the stress response, metabolism balance and immune–neuroendocrine crosstalk. Insight continues to draw attention regarding the control of vitamin C as a crucial cofactor in the regulation at many levels of this axis from neurotransmitter regulation in the hypothalamus to steroid hydroxylation in adrenal gland. This review summarizes current insights in the physiological and molecular interactions by vitamin C with HPA axis, focusing on its involvement in cortisol synthesis, antioxidant system, influencing of ACTH sensitivity and regulating the glucocorticoid-feedback. Special emphasis is placed on advances from experimental, clinical and translational studies which reveal how the availability of vitamin C influences the capacity for stress adaptation, neuroendocrine signalling as well as inflammatory pathways. The review also outlines inconsistencies between studies, methodological considerations and unexamined mechanistic connections that may explain the variation in findings. In summarizing the most recent works, this review presents a comprehensive view of vitamin C–HPA axis crosstalk and its putative clinical relevance in stress-related, metabolic, and inflammatory diseases.

KeyWords:

Vitamin C, Ascorbic acid, Stress, HPA, Cortisol

References:

  1. Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology83, 25–41. https://doi.org/10.1016/j.psyneuen.2017.05.018
  2. Al-fahham, A. A. (2019). Effect of low dose vitamin C on public speaking stress during group presentation. Journal of Physics: Conference Series, 1294(6), 062054. https://doi.org/10.1088/1742-6596/1294/6/062054
  3. Beglaryan, N., Hakobyan, G., & Nazaretyan, E. (2024). Vitamin C supplementation alleviates hypercortisolemia caused by chronic stress. Stress and Health. https://doi.org/10.1002/smi.3347
  4. Blanchflower, D. G., Oswald, A. J., & Stewart-Brown, S. (2021). Dietary patterns, psychological well-being and cortisol regulation. Social Science & Medicine, 270, 113686. https://doi.org/10.1016/j.socscimed.2020.113686
  5. Brody, S., Preut, R., Schommer, K., & Schürmeyer, T. H. (2002). A randomized controlled trial of high-dose ascorbic acid for reduction of blood pressure, cortisol, and subjective responses to psychological stress. Psychopharmacology (Berl), 159(3), 319–324. https://doi.org/10.1007/s00213-001-0929-6
  6. Carr, A. C., & Lykkesfeldt, J. (2021). Vitamin C and stress: An updated review on mechanisms and applications. Nutrients, 13(3), 701. https://doi.org/10.3390/nu13030701
  7. Carr, A. C., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211
  8. Carrillo, A. E., Murphy, R. J., & Cheung, S. S. (2008). Vitamin C supplementation and salivary immune function following exercise-heat stress. International journal of sports physiology and performance3(4), 516–530. https://doi.org/10.1123/ijspp.3.4.516 
  9. de Oliveira, C., et al. (2019). Intravenous vitamin C improves fatigue and mood in stressed individuals with low ascorbate status. Nutrition Journal, 18, 15. https://doi.org/10.1186/s12937-019-0446-4
  10. Dhotre, T., Thanawala, S., & Shah, R. (2025). Optimizing Oral Vitamin C Supplementation: Addressing Pharmacokinetic Challenges with Nutraceutical Formulation Approaches-A Mini Review. Pharmaceutics17(11), 1458. https://doi.org/10.3390/pharmaceutics17111458
  11. Graumlich, J. F., et al. (2021). Micronutrient deficiencies, cortisol rhythms, and chronic stress: A clinical review. Journal of Human Nutrition and Dietetics, 34(6), 987–995. https://doi.org/10.1111/jhn.12905
  12. Kokoris, J. Č., Ružić, Z., Kanački, Z., Stojanović, S., Paraš, S., & Milošević, V. (2024). Effects of vitamin C and early-age thermal conditioning on pituitary adrenocorticotropic hormone cells in broilers chronically exposed to heat stress: an immunohistomorphometric and hormonal study. Veterinary research forum : an international quarterly journal, 15(3), 125–130. https://doi.org/10.30466/vrf.2023.2009320.3981
  13. Lopresti A. L. (2020). The Effects of Psychological and Environmental Stress on Micronutrient Concentrations in the Body: A Review of the Evidence. Advances in nutrition (Bethesda, Md.)11(1), 103–112. https://doi.org/10.1093/advances/nmz082
  14. Marik, P. E. (2020). Vitamin C: An essential “stress hormone” during sepsis. Journal of Thoracic Disease, 12(S1), S84–S95. https://doi.org/10.21037/jtd.2019.12.63
  15. Moabedi, M., & Milajerdi, A. (2025). The effect of co-administration of vitamin E and C supplements on plasma oxidative stress biomarkers and antioxidant capacity: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials with meta-regression. Frontiers in immunology16, 1547888. https://doi.org/10.3389/fimmu.2025.1547888
  16. Padayatty, S. J., Doppman, J. L., Chang, R., Wang, Y., Gill, J., Papanicolaou, D. A., & Levine, M. (2007). Human adrenal glands secrete vitamin C in response to adrenocorticotrophic hormone. The American journal of clinical nutrition86(1), 145–149. https://doi.org/10.1093/ajcn/86.1.145
  17. Patani, A., Choudhary, S., Jannuzzi, A. T., & Chatterjee, S. (2023). Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Frontiers in Endocrinology, 14, 1271521. https://doi.org/10.3389/fendo.2023.1271521
  18. Poljsak, B., & Milisav, I. (2018). The role of antioxidants and micronutrients in chronic stress and hormonal imbalance. Oxidative Medicine and Cellular Longevity, 2018, 1–18. https://doi.org/10.1155/2018/2091926
  19. Prevatto, J. P., Torres, R. C., Diaz, B. L., Silva, P. M. R. E., Martins, M. A., & Carvalho, V. F. (2017). Antioxidant treatment induces hyperactivation of the HPA axis by upregulating ACTH receptor in the adrenal and downregulating glucocorticoid receptors in the pituitary. Oxidative Medicine and Cellular Longevity, 2017, Article 4156361. https://doi.org/10.1155/2017/4156361
  20. Sim, M., Naidoo, D., Wang, K. W., Chitcholtan, K., Vissers, M. C. M., & Carr, A. C. (2022). Vitamin C supplementation promotes mental vitality in healthy young adults: A randomized, double-blind, placebo-controlled trial. European Journal of Nutrition, 61(2), 695–706. https://doi.org/10.1007/s00394-021-02656-3
  21. Suh, H. W., Lee, S. Y., & Lee, J. D. (2012). Intravenous vitamin C administration reduces fatigue in office workers: a double-blind randomized controlled trial. Nutrition Journal, 11(1), 7. https://doi.org/10.1186/1475-2891-11-7
  22. Travica, N., Henry, J. D., Renshaw, R., McGillivray, J., Pipingas, A., & Firth, J. (2020). The contribution of plasma and brain vitamin C on age- and gender-related cognitive differences: A mini-review. Frontiers in Integrative Neuroscience, 14, 47. https://doi.org/10.3389/fnint.2020.00047
  23. Young, H. A., Cousins, A. L., & Watkins, E. R. (2019). Diet, micronutrients, and stress physiology: A systematic review. Psychoneuroendocrinology, 109, 104399. https://doi.org/10.1016/j.psyneuen.2019.104399
  24. Zhang, Q., Qi, X., Wang, Z., Zhang, D., & Wang, T. (2024). The Association Between Dietary Vitamin C and Sleep Disorders: A Cohort Study Based on UK Biobank. Nutrients16(21), 3661. https://doi.org/10.3390/nu16213661